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We derive a lower bound on the number of points of a partial linear space of girth 5. As
an application, certain strongly regular graphs with =2 are ruled out by observing that the first
subconstituents are partial linear spaces.

1. Partial linear spaces of girth 5

A partial linear space consists of a set of points and a set of lines (subsets of
the point set) such that any two lines have at most one point in common. Collinear
points are called adjacent or neighbours. The girth of a partial linear space is the
length of a shortest circuit.

In view of the application to strongly regular graphs we shall use k for the
number of points and A for the valency (of the pointgraph) of a partial linear space.

Theorem. A connected partial linear space with girth at least 5 and more than one line
(lines possibly of varying size) in which every point has A neighbours, contains k=
=1(A+3)/2 points.

Proof. Let L be a line of size /. Denote by T the set of points at distance at least two
from L. Then |T|=k—I(A+2—1), and /= since a line of size A+1 would be
a component. Let x; be the number of points in T having exactly i neighbours at
distance one from L. We have

B Zx=k-=I1A+2-D,
() Six; = I(A+1-DI-1),
i

(iii) ;‘[;]x, = (21) (A+1-D2

Hence .
0= %’(i—(&+2—-l))2xi = 2;’G]xi—(zﬁ.+3—2l)_i§_,‘ixi+(l+2—bzzi'x- =
= I(I-DA+1=D=10-1D)A+1-DQA+3-2D+A+2=D*(k—I(A+2-D),
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whence k(,1+2—l)2.%l(l+2"l)((}‘+2)(l+l_l)+l)

which can be written as
A+2)(A-D@2I-3-12)
2(A+2-))

It follows that if there is a line of size [ with /=(1+3)/2 then k=A(A+3)/2 (with
strict inequality unless /=1 or I=(A+3)/2). . .

If / is relatively small then we can improve on estimate (ii). Let m be the size
of the longest line intersecting L. We have

@ 3 in=l0+1-D@+1-m).

k5%1a+a+

Hence, evaluating 0§Z (i-I)(i—1-1)x; we find

2i(m-N(A+1-1

2_. —
k=@+1)y°- 1

It follows that if the longest line in our partial linear space has length at most (1 +1)/2
(putting m=/=(A+1)/2) then k=(A1+1)(1+2)2=2(2+3)/2+1.

In case the longest line has length (1+2)/2, we have to estimate somewhat
more carefully. If there is a line L of length /=A4/2 such that each line intersecting
L has length at most 4/2 then k=1%2+24+1. This shows that for smaller k there
are many lines of size A/2+1; in fact too many.

Write |M|=1+s, for each line M. Considering the lines M distinct from
L passing through a point x€L we see that x is at distance two from 2 sy (A—sy)
points in T. But Y sy=A+1-1l so 2 sy(A—sy)=1(A+1-D—(GA+1-D%*+
+M2N susy=(—-DOA+1=-D+(m—D(Q2A+1-0)—n,) where n,=21 is the

* M
number of lines intersecting L in the point x.

Let n,=1 for j points of L, so that n,=2 for the remaining /—j points
of L. Then ’

@ Jix=zll-DA+1-D+2(-H@A=D.
In particular, for /=1/2+1 we find, evaluating 0=} (i—[)(i—!+1)x;, that

k 2%124_,14_14__4_(’;2_1)&"_1');

On the other hand, if for some j€N each line of size /=1/2+41 intersects at least
j+1 others of this size then considering j(j+1) lines of size / intersecting such
lines intersecting a given line L we find |T|=k—12=j(j+1)(I—1)2=4i(j+1)/4.

This shows that if the linear space contains lines of size /=A1/2+1 then

.41-8

. |1
(%) kéon;glmm{—2—13+3l—3—_]——l—-—, %Aj(j+l)+%lz+l+l}.
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Hence, for 1=2,4,6,8,10 we find k=5, 15,27, 46, 67 respectively, and

in general putting j=[yA] we find k=A(A+43)2 for A>6. This proves the
theorem.

Remark. Equality holds in the theorem iff A=2 and k=5. (This partial linear
space exists — it s a pentagon.) For: if there is a line of size 4/2+1 then k>A(1+3)/2
unless A=2 or A=6. Butif 1=6 and k=27 one sees that each line of size 4
intersects exactly three others and that each point in T has three or four neighbours
at distance one of L (where /=4) — hence lines of size 4 do not intersect in T and
|T"1=18, k=34, contradiction.

) Hence there are no lines of size 4/2+1, but each line of size at most (1+1)/2
intersects a longer line, so there are lines of size (1+43)/2 or 1. In the former case
(/=(2+3)/2) we may suppose A>3. We see that j=I, i.c., each line of size (1+3)/2
intersects only lines of size (4+1)/2. Let there be a lines of size (1+3)/2. Then
there are (1—a)(1+-3)/2 points not in one of these lines, and a(A—1)(A+3)/4 in-
cidences of such points with (-+1)/2-lines. But each point is in at most two (4 +1)/2-
lines, so (A—a)(A+3)=a(A—1)(A+3)/4 and a=3. If a=1 then we find a line
L with I=(2+1)/2 intersecting only one line of size (1+3)/2, i.e., with j=1. From
0= > (i—I—1)x; one finds /=1, contradiction.

Hence there are no lines of size (A43)/2 and all lines have size 2 or A.

If some point is only in lines of size 2 then it has A neighbours and 1(1—1)
noints at distance 2 so that k=1%2+1. On the other hand, if A>2 and each point
is in a line of size 4, then let L be a line of size A. Each of its A neighbours is in a line
of length A, and these lines cannot intersect, so |T|=A(A—1) and kz=A(A+1).
This proves our claim.

Remark. We do not know the right order of magnitude of the lower bound. The
Theorem gives something of order A2/2 — on the other hand, the Moore graphs of
diameter two are examples with k=42+1. For small 1 we have:

A=2, k=25, the pentagon.
A=3, k=10, the Petersen graph.
A=4, k=15

There is a unique partial linear space on 15 points with 10 lines of size 3 and
girth 5. Its point-graph is distance regular with parameters /(4,2,1; 1,1, 4). It is
obtained from the generalised quadrangle GQ(2,2) by deleting a parallel class of
lines. It is the line graph of the Petersen graph.

Now these three examples are regular: all lines have the same size. But for
regular partial linear spaces these same methods yield stronger bounds: we have
k=A(1—I+2)+1 if all lines have size I. If A=I(/—1) this can be strengthened to

(-1
k= P(A—21+3)+i—r)—.
(In case A=I(I—1), equality would mean that we have a strongly regular graph

with p=1 and discriminant (/— 1)¥/5, hence equality occurs only for /=2. In
general equality means that we have a strongly regular graph with u=1in the first
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i i i d case —

case and a distance regular graph of diameter at most three in the secon
the linegraph of a system satisfying one bound with equality, satisfies the other
with equality. This yields very strong conditions on the parameters, and only finitely

many examples are known. ) ) o

d An iﬁﬁnite family o)f regular examples is provided by the incidence graphs
of finite projective planes: they have k=2(*—A+1), for A=g+1, g a primepower.
Concerning irregular examples, there are precisely two others with 1=3,

k=10 namely
-

\
end \

For A=2, k=5 and A=4, k=15 there are no irregular examples. There are no
examples with A=35, k=2L.

2. Strongly regular graphs with p=2

Let G be a graph such that two nonadjacent vertices have at most two com-
mon neighbours. Let x be a fixed vertex, and H=I'(x) the graph induced on the
neighbours of x. Then each edge of H is contained in a unique maximal clique, and
points and maximal cliques of H form a partial linear space of girth at least five.

Now if G is moreover regular of valency k and each edge is in exactly A triang-
les then by the Theorem, either k=A(A+3)/2 or I'(x) is a disjoint union of lines
of size 1+1. It follows that (A+1)[k and that G itself is a partial linear space.

In particular, this holds for strongly regular graphs with parameters v, k, A, u
(as defined, e.g., in [2]) where p=2. Thus:

Corollary. A strongly regular graph with p=2 and k<A(A+3)/2 is a partial quad-
rangle; in particular it satisfies the divisibility condition (A+1)|k.

This Corollary rules out infinitely many feasible sets of parameters of strongly
regular graphs that just escape the claw bound ([2], Theorem 4.7 (iii)). For example,
if p=2 and the smallest eigenvalue is —4 then its multiplicity is 241 +210/(A+6)
so that 4€{0, 1,4, 8,9, 15, 24, 29, 36, 64, 99, 204}. The claw bound rules out the
parameter sets With A=24. The Corollary implies that also A€ {8,9, 15} is impos-
sible, thus leaving the parameter sets (v, k, 1)=(56, 10, 0), (99, 14, 1), (300, 26, 4).
(The first one corresponds to the Gewirtz graph [1], the other two are unknown.)

An infinite series of ruled out parameter sets is e.g. (v, k, A)=
=(r2(6t+11)(3t+2), 6:2+10t—2,5¢—2), admissible for t=1,2,4 or 6 (mod7)
but excluded by the corollary for r=2.

Looking at the table we found one parameter set that just escaped the bound,
namely (v, k, 1)=(1944, 67, 10). But also this one is easily ruled out. Returning
to the proof of the theorem in the special case k=67, A=10 we see that there are
no lines of size 7, 8 or 9 and that each line of length 6 intersects at least 4 and hence
exactly 4 other lines of size 6. If there is a line of size 6 then there are at least 144

+12=17 such lines, together containi - 17= i
g sue g mning at least (2+44/2)-17=68 points, a
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Hence there are only lines of size 2 or 10 and k=1241=101, again a con-
tradiction.

Clearly our result can also be applied to other distance regular graphs, but
we have no examples at present.

Table of “‘feasible’’ parameters for strongly regular graphs
with v=2000 and p=2 but not with the parameters of a net

v k A r s f g existence
4 2 0 0 -2 2 1 4-cycle (unique)
16 5 0 1 -3 10 5 Clebsch graph (unique)
56 10 0 2 -4 35 20 Gewirtz graph (unique)
85 14 3 4 -3 34 50 ?
99 14 1 3 -4 54 44 7
243 22 1 4 —5 132 110 Berlekamp-Seidel-van Lint graph
300 26 4 6 -4 117 182 ?
352 26 0 4 -6 208 143 ?
456 35 10 11 -3 95 360 Ruled out by the claw bound
630 37 4 7 -5 259 370 ?
704 37 0 5 -7 407 296 ?
736 42 8 10 —4 207 528 Ruled outin this note
875 46 9 11 —4 230 644 Ruled outin this note
1176 50 4 8 -6 500 675 ?
1276 50 0 6 -8 725 550 ?
1625 58 3 8 —7 754 870 ?
1944 67 10 13 —5 536 1407 Ruled out in this note
1961 70 15 17 —4 370 1590 Ruled out in this note

(Here k, r, s are the eigenvalues of the graph, with multiplicities 1, £, g.)
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